001581

INSTITUTO FEDERAL DE TELECOMUNICACIONES

Insurgentes Sur No. 1143 Col. Noche Buena Deleg. Benito Juárez C.P. 03720, México D.F. Unidad Política Regulatoria

AREA

Dirección General de Regulación Técnica

Off manufactures

2005 EME 13 AM 11 99

OFICIALIA DE PARTES

México, D.F. a 12 de enero de 2016.

Asunto:

Comentarios a la Disposición Técnica IFT-010-2015.

MAURO FRANCISCO CASTILLO COLLADO, en mi carácter de representante legal de AT&T Comunicaciones Digitales, S. de R. L. de C.V., AT&T Opco Une Mex, S. de R.L. de C.V., AT&T Norte, S. de R.L. de C.V., AT&T Desarrollo en Comunicaciones de México, S. de R.L. de C.V., AT&T del Occidente, S. de R.L. de C.V., AT&T Comcentro, S. de R.L. de C.V., AT&T del Golfo, S. de R.L. de C.V., AT&T Sureste, S. de R.L. de C.V. y AT&T Central, S. de R.L. de C.V. (en lo sucesivo, y en conjunto, AT&T) personalidad que tengo debidamente acreditada ante ese H. Instituto Federal de Telecomunicaciones (en adelante "IFT"); señalando como domicilio para oír y recibir todo tipo de notificaciones y en relación al presente el ubicado en Paseo de los Tamarindos 90, Piso 24, Colonia Bosques de las Lomas, Delegación Cuajimalpa, C.P. 05120, México, D.F. autorizando para tales efectos, a los señores Antonio Díaz Hernández, Carlos Edgardo Hirsch Ganievich, Roberto Carlos Aburto Pavón, Zyanya Norman González, José Manuel Tolentino Medrano y Francisco Villafuerte Iturbide con el debido respeto comparezco a exponer:

ANTECEDENTES

Único. Con fecha 1 de diciembre de 2015, el Instituto Federal de Telecomunicaciones a través de su Unidad de Política Regulatoria; publicó la Consulta del "Anteproyecto de Disposición Técnica IFT-010-2015: especificaciones y requerimientos de los equipos de bloqueo de señales de radiocomunicación dentro de Centros de Readaptación Social".

COMENTARIOS Y OPINIONES

PRIMERO.- Al respecto, queremos destacar que la disposición en consulta debe ser congruente con los términos utilizados en los "Lineamientos de Colaboración entre Autoridades Penitenciarias y los Concesionarios de Servicios de Telecomunicaciones y Bases Técnicas para la Instalación y Operación de Sistemas de Inhibición" publicados en el Diario Oficial de la Federación de fecha 3 de septiembre de 2012 y en tal sentido es que se hacen los comentarios que se adjuntan al presente escrito como Anexo 1.

EIFT16-1214

SEGUNDO.- Sugerimos que la Disposición Técnica IFT-010-2015 incluya ejemplos y recomendaciones prácticas del cálculo de la potencia de transmisión que usarían los inhibidores de señal para diversas frecuencias y tecnologías (por ejemplo: GSM, WCDMA y LTE).

En tal sentido, si se miden las potencias en el Down Link dentro de un reclusorio y se busca bloquearlas, la disposición técnica en comento podría ser usada como referencia para definir los valores de potencia que deberán usar los inhibidores.

Por lo expuesto solicitamos al Instituto Federal de Telecomunicaciones:

PRIMERO.- Tenernos por presentados en los términos del presente escrito, en representación de **AT&T** y por autorizadas a las personas y domicilio que se señala en el proemio para oír y recibir notificaciones.

SEGUNDO.- Se tengan por presentados comentarios y opiniones de **AT&T**, respecto la Consulta del "Anteproyecto de Disposición Técnica IFT-010-2015: especificaciones y requerimientos de los equipos de bloqueo de señales de radiocomunicación dentro de Centros de Readaptación Social".

Atentamente,

MAURO FRANCISCO CASTILLO COLLADO

ANEXO 1

ANEXO ÚNICO

DISPOSICIÓN TÉCNICA IFT-010-2015: ESPECIFICACIONES Y REQUERIMIENTOS DE LOS EQUIPOS DE BLOQUEO DE INHIBIDORES DE SEÑALES DE RADIOCOMUNICACIÓN TELECOMUNICACIÓN DENTRO DE CENTROS DE READAPTACIÓN SOCIAL, ESTABLECIMIENTOS PENITENCIARIOS O CENTROS DE INTERNAMIENTO PARA MENORES, FEDERALES O DE LAS ENTIDADES FEDERATIVAS.

ÍNDICE

- 1. OBJETIVO
- 2. CAMPO DE APLICACIÓN
- 3. DEFINICIONES Y ABREVIATURAS
- 4. ESPECIFICACIONES TÉCNICAS, CONDICIONES Y PROHIBICIONES DE OPERACIÓN DE LOS EQUIPOS DE BLOQUEO DE SEÑALES INHIBIDORES DE SEÑALES DE TELECOMUNICACIÓN DE RADIOCOMUNICACIÓN
- 5. MÉTODOS DE PRUEBA
- 6. INSTALACIÓN Y OPERACIÓN
- 7. CONCORDANCIA CON NORMAS INTERNACIONALES
- 8. BIBLIOGRAFÍA
- 9. EVALUACIÓN DE LA CONFORMIDAD Y VIGILANCIA DEL CUMPLIMIENTO
- 10. CONTRASEÑA DEL PRODUCTO

TRANSITORIOS

1. OBJETIVO

La presente Disposición establece las especificaciones técnicas, condiciones y prohibiciones de operación para los equipos de bloqueo de señales de radiocomunicación Inhibidores de señales de telecomunicación en todas las bandas de frecuencia que se utilicen para comunicación con los dispositivos o equipos terminales móviles, así como los métodos de prueba para comprobar el cumplimiento de dichas especificaciones.

2. CAMPO DE APLICACIÓN

La presente Disposición Técnica es aplicable a todos aquellos equipos de bloqueo de señales inhibidores de señales de telecomunicación, que en el ámbito técnico operativo bloqueen, cancelen o anulen de manera permanente las señales de radiocomunicación dentro del perímetro de los centros de readaptación social, establecimientos penitenciarios o centros de internamiento para menores, federales o de las entidades federativas, cualquiera que sea su denominación, sin que excedan en ningún caso veinte metros fuera de las instalaciones de los centros o establecimientos penitenciarios a fin de garantizar la continuidad y seguridad de los servicios a los usuarios externos; es decir, debe preverse que al operar, previéndose que cuando operen, no causen interferencias perjudiciales a otros equipos de operación autorizada, ni a las redes y servicios de telecomunicaciones autorizados por el Instituto. Lo anterior sin perjuicio del cumplimiento con otras disposiciones legales y administrativas aplicables.

Los equipos de bloqueo de señales de radiocomunicación inhibidores de señal de telecomunicación únicamente podrán ser empleados por las autoridades facultadas para ello, para los efectos previstos en las disposiciones legales aplicables.

3. DEFINICIONES Y ABREVIATURAS

Para efectos de la presente Disposición Técnica, además de las definiciones previstas en la Ley Federal de Telecomunicaciones y Radiodifusión y demás disposiciones legales, reglamentarias y administrativas aplicables, se entenderá por:

- Bloqueo de señales: Impedimento del flujo normal de señales de radiocomunicación entre los dispositivos o equipos terminales móviles y las estaciones que proporcionan el servicio;
- II. Bloqueador de señales Inhibidor de señal de telecomunicación o Bloqueador de señal: Dispositivos que impiden que los equipos terminales móviles se puedan comunicar con las estaciones de radio del operador móvil, impidiendo la recepción y transmisión de llamadas y transferencias de datos (SMS, imágenes, acceso a Internet, entre otras). Dichos dispositivos actúan emitiendo señales de radiofrecuencia empleando diferentes bandas de frecuencias, por ejemplo, tecnologías de telecomunicaciones móviles (2G, 3G, 4G, Satelital, entre otras);.
- III. Centros de readaptación social: Son los centros de readaptación social, establecimientos penitenciarios o centros de internamiento para menores, federales o de las entidades federativas, cualquiera que sea su denominación;
- IV. Intervisibilidad: Capacidad de observar en una línea visual directa (sin obstrucción) desde una posición en la superficie de la tierra hacia otra, teniendo en cuenta el terreno y los obstáculos entre ellos. Para el caso de la comprobación técnica de los métodos de prueba de la presente Disposición, es un tipo de línea de vista que tiene el punto de medición y que debe considerar además la altura a la que está localizada la antena del sistema de medición;
- V. Dispositivo o equipo terminal móvil: Dispositivo que utiliza el usuario y que se conecta más allá del punto de conexión terminal de una red pública

- mediante el uso del espectro radioeléctrico, con el propósito de tener acceso y/o recibir uno o más servicios de telecomunicaciones;
- VI. Downlink (enlace o conexión de bajada): Término utilizado en un enlace de comunicación para describir la dirección de la transmisión de la red, desde la estación base (Network Base Station) hacia el dispositivo o equipo terminal móvil;
- VII. Emisiones no esenciales: Emisión en una o varias frecuencias situadas fuera del ancho de banda necesario, cuyo nivel puede reducirse sin influir en la transmisión de la información correspondiente. Están comprendidos en las emisiones no esenciales: las emisiones armónicas, las emisiones parásitas, los productos de inter-modulación, los productos de la conversión de frecuencia y en este caso, las emisiones fuera de banda;
- VIII. Equipo bajo prueba (EBP): Unidad representativa de un modelo de bloqueador de señales sobre el que se llevan a cabo pruebas para verificar el cumplimiento con las especificaciones de la presente Disposición Técnica;
- IX. Ganancia isótropa absoluta: Relación generalmente expresada en decibelios, que debe existir entre la potencia necesaria a la entrada de una antena de referencia sin perdidas y la potencia suministrada a la entrada de la antena en cuestión, para que ambas antenas produzcan, en una dirección dada, la misma intensidad de campo o la misma densidad de flujo de potencia a la misma distancia. Se denomina isótropa solamente si la antena de referencia es una antena isótropa aislada en el espacio;
- X. LFTR: Ley Federal de Telecomunicaciones y Radiodifusión;
- XI. Potencia isotrópica radiada equivalente (PIRE): Producto de la potencia suministrada a la antena por su ganancia con relación a una antena isótropa en una dirección dada (ganancia isótropa absoluta);
- XII. Radiocomunicación: Toda telecomunicación transmitida por ondas radioeléctricas, y que incluye de manera enunciativa, no limitativa: telefonía celular, transmisión de datos e imagen;

XIII. Uplink (Enlace o conexión de subida): Término utilizado en un enlace de comunicación para describir la dirección de la transmisión desde el dispositivo o equipo terminal móvil hacia a la estación base (Network Base Station) de la red.

TABLA 1. ABREVIATURAS

antilog	Antilogaritmo de base 10
ANS	Atenuación Normalizada de Sitio
dB	Decibelio
dBc	Nivel relativo entre una señal portadora y alguno de sus armónicos.
dBi	Ganancia expresada en decibelios de una antena cualquiera referida a una antena isótropa.
dBm	Decibelios referidos a 1 mW.
dBm/Hz	Decibelios referidos a 1 mW por Hertz.
dBW	Decibelios referidos a 1 watt.
EBP	Equipo Bajo Prueba
GHz	Gigahertz
iden	Red Mejorada Digital Integrada (del inglés; Integrated Digital Enhanced Network)
Instituto	Instituto Federal de Telecomunicaciones
Hz	Hertz
kHz	Kilohertz
log	Logaritmo de base 10
MHz	Megahertz
mW	Miliwatt
p.p.m.	Partes por millón
PIRE	Potencia isotrópica radiada equivalente
RBW	Ancho de banda del filtro de resolución (del inglés Resolution Bandwidth)
RF	Radiofrecuencia
SVSWR	Relación de onda estacionaria de sitio (del inglés, Site voltage standing wave ratio)
VBW	Ancho de banda del filtro de video (del inglés, Video Bandwidth)
VSWR	Relación de onda estacionaria (del inglés Voltage standing wave ratio)
W	Watt

- 4. ESPECIFICACIONES TÉCNICAS, CONDICIONES Y PROHIBICIONES DE OPERACIÓN DE LOS EQUIPOS DE BLOQUEO DE SEÑALES INHIBIDORES DE SEÑALES DE TELECOMUNICACIÓN DE RADIOCOMUNICACIÓN.
- 4.1. Condiciones y prohibiciones de operación de los equipos de bloqueo de señales de radiocomunicacióninhibidores de señal de telecomunicaciones.
- **4.1.1.** El uso de equipos de bloqueo de señalesinhibidores de señal de telecomunicación, se limita al interior de los centros de readaptación social.

Cualquier otro uso diferente al antes mencionado está prohibido y, resultará en la potencial ocurrencia de interferencias perjudiciales, en detrimento de la calidad de los servicios públicos de telecomunicaciones que prestan los diversos concesionarios al amparo de sus respectivos títulos habilitantes, las cuales serán tratadas conforme a lo previsto en la LFTR y demás disposiciones aplicables.

- **4.1.2.** El bloqueo de las señales deberá llevarse a cabo exclusivamente en el interior de los centros de readaptación social, sin exceder por ningún motivo el límite de 20 metros fuera de las instalaciones de los referidos centros de readaptación social, a fin de garantizar la continuidad y seguridad de los servicios a los usuarios externos.
- 4.2. Especificaciones técnicas de los equipos de bloqueo de señales inhibidores de señales de telecomunicación.
- **4.2.1.** La estabilidad de la frecuencia de los equipos de bloqueo de señalesinhibidores de señales de telecomunicación debe mantenerse

automáticamente dentro de límites que no permitan variaciones de frecuencia más allá de $\pm 20~\mathrm{p.p.m}$

Lo anterior se verifica de acuerdo al método de prueba 5.2.3.

4.2.2. La potencia de transmisión de los equipos de bloqueo de señales inhibidores de señales de telecomunicación no debe presentar variaciones mayores que ±1dB del valor requerido como máximo, esto cuando sea sometido a variaciones de ±15% de la tensión de alimentación primaria, a una temperatura de -10 a +50°C.

La potencia de transmisión de los equipos de bloqueo de señales inhibidores de señales de telecomunicación debe ser la estrictamente necesaria para garantizar el bloqueo, cancelación o anulación de manera permanente de las señales de radiocomunicación, de acuerdo a la Tabla 2.

La potencia de transmisión de los equipos de bloqueo de señales inhibidores de señales de telecomunicación debe ser ajustable por cada intervalo de frecuencia en los que opere dicho equipo.

Lo anterior se verifica de acuerdo al método de prueba 5.2.4.

4.2.3. Los niveles máximos de potencia de las emisiones no esenciales en una o más frecuencias situadas fuera de la banda de frecuencia de operación de los equipos bloqueadores de señales inhibidores de señales de telecomunicación, deben tener una atenuación mayor que la definida en la Ecuación 1:

Atenuación (dB) = $43 + 10\log_{10} P$ o 70 dBc, Ecuación (1).

Se debe considerar cualquiera que sea la más restrictiva.

Donde P es la potencia medida en Watts, en la frecuencia fundamental.

Si la P < 500 W, el nivel absoluto de las emisiones no esenciales máxima debe ser de -13 dBm (-43 dBW).

Los valores anteriores se verifican de acuerdo con lo establecido en 5.2.5.

- **4.2.4.** Los equipos bloqueadores de señales inhibidores de señales de telecomunicación al emplear elementos radiadores integrados al mismo o, de existir la posibilidad de conectabilidad/desconectabilidad de radiadores externos, éstos deben contar, al menos, con las siguientes especificaciones técnicas de fabricación:
 - a) Tipo direccional;
 - b) Frecuencia central de operación;
 - c) Intervalo de Frecuencias de operación (MHz);
 - d) Respuesta en frecuencia en el intervalo de operación;
 - e) Máxima Ganancia (dBi);
 - f) Máxima Potencia de entrada (dBW);
 - g) Polarización;
 - h) Ángulo en grados de abertura (igual o menor a 90°) a 3 dB en la horizontal y vertical;
 - i) Patrón de Radiación;
 - j) Relación del lóbulo frontal sobre el posterior,
 - k) Impedancia de entrada, y
 - 1) VSWR igual o menor a 1.5:1

Lo anterior se verifica de acuerdo al método de prueba 5.2.6.

4.2.5. Los elementos radiadores utilizados con los equipos de bloqueo de señales inhibidores de señales de telecomunicación, deben ser aquellos que permitan que la potencia isotrópica radiada equivalente (PIRE) sea la mínima necesaria para bloquear las señales en el interior de los centros de readaptación social.

Lo anterior se verifica de acuerdo al método de prueba 5.2.7.

4.2.6. Los equipos bloqueadores de señales inhibidores de señales de telecomunicación, dependiendo de la banda o bandas de frecuencia en que operen para el bloqueo de señales, deben atender las bandas de frecuencia de operación descritas en la siguiente tabla, considerando que el bloqueo de señal sólo se debe efectuar sobre el enlace downlink conforme al numeral 4.2.11:

TABLA 2. FRECUENCIAS DE REFERENCIA.

Servicio	Bandas de Frecuencias	Tecnologías Identificadas*
Radiocomunicación privada Servicio Troncalizado	148-174 MHz	TDMA, FDMA, CDMA, TETRA
Servicio Troncalizado (Seguridad Publica)	380-400 MHz	TETRAPOL (IRIS), TETRA (SSP-DF)
Servicio Troncalizado (Público y Social)	410-430 MHz	TETRA, IDEN, APCO25
Radiocomunicación	430-440 MHz	TDMA, FDMA, CDMA
privada	440-450 MHz	TDMA, FDMA, CDMA
Telefonía Rural (FONCOS)	453-457.475 / 463-467.475 MHz	CDMA-450
Servicio celular	700 MHz	LTE
Servicio Troncalizado	806-814 MHz / 851-859 MHz (Uplink / Downlink)	LTR, TETRA, IDEN, APCO25
Acceso inalámbrico móvil	814-824 MHz / 859-869 (Uplink / Downlink)	LTE BANDA ANCHA

	824-849 MHz / 869-894 MHz (Uplink / Downlink)	GSM, LTE, UMTS (W-CDMA), IMT
Servicio celular	1850-1910 / 1930-1990 MHz (Uplink / Downlink))	GSM, LTE, UMTS (W-CDMA), IMT
Servicio celular	1710-1755 / 2110-2155 MHz 1 755-1770/2155-2170 MHz 1770-1780/2170-2180 MHz {Uplink / Downlink}	AWS
Acceso inalámbrico móvil	1920-2000 MHz	LTE, Banda PCS
	2300-2400 MHz	WIMAX, LTE, IMT
Acceso inalámbrico fijo	2500-2690 MHz	WIMAX, LTE, MMDS, IMT
	3300-3350 MHz	WIMAX
	3400-3600 MHz	WIMAX, LTE, Proximity II, IMT
	148-174 MHz	ICM
	450-470 MHz	DECT
	902-928 MHz	WIMAX
Banda de uso libre	1929 – 1930 MHz	BLUETOOTH
	2400-2483.5	WIFI
	5725-5850 MHz	WIFI

^{*}Tecnologías identificadas de acuerdo con las específicaciones de los perfiles actuales, lo cual no en todos los casos garantiza su desarrollo e implementación.

Lo anterior se verifica de acuerdo al método de prueba 5.2.8.

4.2.7. Los equipos bloqueadores de señales inhibidores de señales de telecomunicación con capacidad de operación en dos o más de las bandas de frecuencias, deben cumplir con los límites de las bandas de frecuencia establecidos en las Tablas 2 y 3, evitando con ello interferir con las radiofrecuencias o bandas de radiofrecuencias adyacentes.

Lo anterior se verifica de acuerdo al método de prueba 5.2.9.

4.2.8. Los equipos de bloqueo de señales inhibidores de señales de telecomunicación que cuenten con amplificadores de potencia de

radiofrecuencia integrados, deberán cumplir con las especificaciones que les corresponda de acuerdo a la presente Disposición.

Lo anterior se verifica de acuerdo al método de prueba 5.2.10.

4.2.9. Se prohíbe la operación de amplificadores de potencia de radiofrecuencia externos, simultáneamente con equipos de bloqueo de señales inhibidores de señales de telecomunicación.

Lo anterior se verifica de acuerdo al numeral 5.2.11.

4.2.10. El equipo bloqueador de señales inhibidor de señales de telecomunicación no debe contar con controles externos que permitan modificar la potencia y la frecuencia de operación, con el objeto de que no pueda ser manipulado y deberá contar con sistemas automáticos que envíen señales de alarma ante cualquier interrupción en su funcionalidad.

Lo anterior se verifica mediante el método de prueba 5.2.12.

4.2.11. El equipo bloqueador de señales inhibidor de señales de telecomunicación que se emplee para tecnología celular y/o radio troncalizado, sólo debe bloquear las frecuencias asignadas para el enlace o conexión de bajada (Downlink). Para tales efectos se debe observar lo establecido en la Tabla 3.

TABLA 3. FRECUENCIAS DE OPERACIÓN DE DIVERSAS TECNOLOGÍAS CELULARES.

lecnologia	GSM/GPRS/EDGE/EDGE Evolution	W-CDMA HSPA(HSDPA y HSUPA)/HSPA+	TD- SCDMA/TD- HSPA/TD- HSPA+	5	LTE- Advanced	cdmaOne (TIA/EIA- 95A/B/C)/ CDMA2000 1x/ 1xEV- DO Rel. 0/Rev. A/B
intervalo de	850 MHz y 1900 MHz T- CSM-380 380.2 0389.8	FDD para la banda 1 a 21 Banda 1: 1920 a 1980 MHz	TDD para	Bandas de 1 a 16 yde 19 a 21 son idénticas aW-CDMA	a 16 yde 19 a	cdmaOne 824 a 849
frecuencia	1399.8 (DI	(UL) 2110 a 2170 MHz (DL)	66 36			MHz (MS TX
Uplink(UL)	T-GSM-410: 410.2 a 419.8	(UL) 1930 a 1990 MHz (DL)	Banda 34:	Banda 17: 704 a 716 MHz	4 a 716 MHz	869 a 894
Downlink (DL)	MHz (DL) GSM-450: 450.4 a	Band 3: 1710 a 1785 MHz (UL) 1805 a 1880 MHz (DL) Banda		FDD Banda 18: 815 a 830	Banda 18: 815 a 830	MHz (BS Tx: US, Korea)
(BS): Estación	467.6 MHz (DL) GSM-480	4: 1710 a 1755 MHz (UL) 2110		(DL), FDD Ban	DL), FDD Banda 24: 1626.5	887 a 925
Base/Base Station	MHz: 479.0 a 486.0 MHz	824 a 849 MHz (UL) 869 a 894	1920 MHz (UL	a 1660.5 MHz (UL) 1525 a 1559 MHz (DL), FDD Banda	1660.5 MHz (UL) 1525 a 559 MHz (DL), FDD Banda	Japan) 832
(MS): Estación	(DL) GSM-710: 698.0 a	MHz (DL) Banda 6: 830 a 840		33: 1900 a 1920 MHz (UL &	20 MHz (UL &	a 870 MHz (RS Ty:
Móvil/Movil Station	716.0 MHz (UL) 728.0 a 746.0 MHz (DI) GSM-750	_ ш	7	DL), TDD Banda 34: 2010 a 2025 MHz (UL & DL), TDD	sa 34: 2010 a & DU). TDD	Japan) 1850
	747.0 MHz a 762.0 MHz	(UL) 2620 a 2690 MHz (DL)		Banda 35: 1850 a 1910 MHz	30 a 1910 MHz	a 1910 MHz
	(UL) 777.0 a 792.0 MHz	925 a 960 MHz (DL) Banda 9		(UL & DL), TDD Banda 36	(UL & DL), TDD Banda 36: 1930 a 1990 MHz (111 & DL)	1930 a 1990
	821.0 MHz (UL) 851.0 a	1749.9 a 1784.9 MHz (UL)		TDD Banda 37	DD Banda 37: 1910 a 1930	MHz (BS Tx:
	866.0 MHz (DL) GSM-850:		Z	MHZ (UL & DL 38: 2570 A 26	MHz (UL & DL), TDD Banda	1780 MHz
•	869.0 a 894.0 MHz (DL) P-	(UL) 2110 a 2180 MHz (DL)		DL), TDD Band	DL), TDD Banda 39: 1880 a	(MS TX:
	GSM-900: 890.2 a 914.8	Banda II: 1427.9 a 1452.9 MHz (III.) 1475.9 a 1500.9 MHz		1920 MHz (UI	1920 MHz (UL & DL), TDD	Nored 1840 a 1870 MHz
	MHZ (UL) 935.2 a 959.8		1 9	Banda 40: 230	Banda 40: 2300 a 2400 MHz //!! & D!! TDD Banda 41:	(BS Ty
	880.0 a 914.8 MHz (UL)	MHz (UL) 728 a 746 MHz (DL)		2496 a 2690 N	2496 a 2690 MHz (UL & DL),	Korea)
-	59.8 (DL) N		7	TDD Banda 42	IDD Banda 42: 3400 a 3600	410 a 430
	GSM-900: 876.0 a 914.8	Banda 14: 788 a 798	Z	MHZ (UL &DL) 43:3400 q 38	MHz (UL &DL), TDD Banda 43: 3400 a 3800 MHz (1)1 &	MHz (MS Tx)

450 a 470 MHZ (BS TX) 824 a 849 MHZ (MS TX) 869 a 894 MHZ (BS TX) 1710 a 1755 MHZ (MS TX) 2110 a 2155 MHZ (MS TX) 1850 a 1910 MHZ (MS TX) 1930 a 1990 MHZ (MS TX) 1920 a 1980 MHZ (MS TX) 1920 a 1980 MHZ (MS TX) 1920 a 1980 MHZ (BS TX)	1.25 MHz
	Arriba de 100 MHz con portadora agregada
QQ (1)	1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz Dependiendo de la Velocidad de Transmisión de LTE
	1.6 MHz
(UL) 758 a 768 MHz (DL) Banda 19: 830 a 845 MHz (UL) 875 a 890 MHz (DL) Banda 20: 832 a 862 MHz (UL) 791 a 821 MHz (DL) Banda 21: 1447.9 a 1462.9 MHz (UL) 1495.9 a 1510.9 MHz (DL)	5 MHz
MHz (DL) T-GSM-900: 870.4 MHz a 876.0 MHz (UL) 915.4 a 921.0 MHz (DL) DCS-1800: 1710.2 a 1784.8 (UL) 1805.2 a 1879.8 MHz (DL) PCS-1900: 1850.0 a 1910.0 MHz (UL) 1930.0 a 1990.0 MHz (DL)	200 kHz
	Ancho de Banda del Canal

Lo anterior se verifica de acuerdo al método de prueba 5.2.13.

4.2.12. La señal correspondiente a la tecnología Tetrapol, como es el caso de los radios Matra, no deberá ser bloqueada al interior del centro de readaptación social bajo ninguna circunstancia.

Lo anterior se verifica de acuerdo al método de prueba 5.2.14.

4.2.13. Los equipes bloqueadores de señales inhibidores de señales de telecomunicación deben cumplir con la Disposición Técnica referente a los límites de exposición máxima para seres humanos a radiaciones electromagnéticas de radiofrecuencia no ionizantes que al efecto el Instituto establezca.

Lo anterior se verifica de acuerdo al numeral 5.2.15.

4.3. Manual del equipo bloqueador de señales inhibidor de señales de telecomunicación.

El manual del equipo bloqueador de señales inhibidor de señales de telecomunicación debe estar escrito en idioma español y contener información suficiente, clara y veraz de sus características técnicas.

Lo anterior se verifica de acuerdo al numeral 5.2.16.

5. MÉTODOS DE PRUEBA

Este capítulo contiene los métodos de prueba que deben emplearse para la comprobación de las especificaciones contenidas en el numeral 4 de la presente Disposición Técnica.

La aplicación de dichos métodos de prueba se llevará a cabo por los laboratorios de pruebas acreditados por un organismo de acreditación y autorizados por el Instituto respecto a esta Disposición Técnica, de acuerdo con los términos previstos en la LFTR y demás disposiciones aplicables.

5.1. Instrumentos de medición. Los instrumentos de medición (Tabla 4) que se utilicen para la aplicación de los métodos de prueba deben contar con dictamen o certificado de calibración que cumpla con las disposiciones aplicables. La calibración de tales instrumentos debe haberse realizado en las magnitudes, frecuencias y en los alcances de medición en los cuales serán empleados.

TABLA 4. CARACTERÍSTICAS DE LOS INSTRUMENTOS DE MEDICIÓN.

Instrumento	Parámetros de medición	Valores requeridos
	Intervalo de frecuencias de operación:	Ver Tablas 2 y3
	Estabilidad de la referencia de frecuencia:	Mejor que 1x10 ⁻⁶ Hz/Hz
Analizador de	Sensibilidad (nivel de ruido):	<-120 dBm
espectro	Impedancia de entrada:	50 ohms
	Exactitud absoluta en amplitud:	Menor o igual que ±1 dB
	Resolución:	0.1 dB
	Detector:	Pico, cuasi-pico, muestra, promedio
Antenas patrón o antenas de	Intervalo de frecuencias de operación:	Ver Tablas 2 y 3
referencia calibradas	A calibrarse en:	Ganancia, Factor de antena y Relación de onda estacionaria
Acoplador de	Impedancias a acoplar	De acuerdo al desacoplamiento específico de impedancias entre el EBP y los equipos de medición
impedancias	Intervalo de frecuencias de operación:	Ver Tablas 2 y 3
	Pérdidas por inserción	< 3.5 dB
	Intervalo de frecuencias de operación:	Ver Tablas 2 y3
Pre-amplificador	Ganancia;	¡Error! Marcador no definido.La necesaria para asegurar un nivel de señal adecuado que sea medible con la exactitud requerida
	Intervalo de frecuencias de operación:	Ver Tablas 2 y3
	Capacidad de medición de	Diodo de respuesta rápida

	potencia:	
	Intervalo de potencia:	De -40 dBm hasta 20 dBm
	Exactitud en amplitud	Menor o igual que ±1 dB
Medidor de	Impedancia de entrada:	50 ohms
potencia de RF	Detector:	Pico
	Intervalo de frecuencias de operación:	Ver Tablas 2 y 3
	b) Cámara anecoica	Pérdida por blindaje mayor que 105 dB en el intervalo de 30 MHz a 6 GHz,
		Atenuación normalizada de sitio (ANS) debe estar dentro de ±4 dB, en el intervalo de 30 MHz a 1 GHz con respecto al valor de ANS 1) calculado teóricamente o 2) con respecto al valor de ANS medido en el sitio de referencia CALTS del CENAM con las mismas antenas; y
		Razón de Onda Estacionaria de Tensión Eléctrica (VSWR, Voltage Standing Wave Ratio) del Sitio, SVSWR, menor o igual que 6 dB, en el intervalo de 1 GHz a 18 GHz.

5.2. Configuraciones para la aplicación de los métodos de prueba.

Para la aplicación de los métodos de prueba de la presente Disposición Técnica pueden emplearse dos posibles configuraciones:

- a) Configuración para medición de emisiones conducidas, o
- b) Configuración para medición de emisiones radiadas.
- **5.2.1. Configuración para medición de emisiones conducidas.** Los equipos se configuran conforme se indica en la Figura 1. Para poder aplicarlo se requiere que la antena del equipo bloqueador de señales inhibidor de señales de telecomunicación sea desmontable.

Con objeto de no dañar el analizador de espectro o el medidor de potencia, debe tenerse cuidado en no exceder el nivel máximo de potencia de entrada especificado por su fabricante, el cual suele ser de 1 Watt (30 dBm). Para tal efecto, emplear uno o varios atenuadores, según se requiera, dispuestos de la forma que se indica en la Figura 1. Para simplificar el proceso de

medición y garantizar la máxima transferencia de potencia, se sugiere que todos los equipos y accesorios que se empleen en la medición tengan una impedancia de entrada y de salida, según corresponda, de 50 Ohms, debe buscarse también que los acoplamientos en la cadena cable-atenuadores-cable-analizador de espectro, sean los óptimos, para lo cual, según sean las impedancias de entrada y de salida de los dispositivos de la cadena, así como las impedancias características de los cables, pudiera requerirse o no el uso de acopladores de impedancias, como se indica en la Figura 1.

Considerando lo anterior, en la aplicación de los métodos de prueba para la determinación de la potencia de salida del EBP deben sumarse al valor medido en el analizador de espectro, las pérdidas habidas en la cadena mencionada, de la forma que lo indica la Ecuación 2:

$$[P_{EBP}]_{dBW} = [P_{medida}]_{dBW} + [\alpha_{cables}]_{dB} + [\alpha_{atenuadores}]_{dB} + [L]_{dB} - [\varepsilon]_{dB}$$
 (Ecuación 2)

Donde:

 $[P_{EBP}]_{dBW}$:

Potencia de salida del EBP en dBW.

 $[P_{medida}]_{dBW}$:

Potencia medida en el analizador de espectro o en el

medidor de potencia de RF, en dBW.

 $[\alpha_{atenuadores}]_{dB}$:

Atenuación del atenuador o atenuadores, en dB.

 $[\alpha_{cables}]_{dB}$:

Atenuación¹ en los cables, en dB.

 $[L]_{dB}$:

Pérdidas de acoplamiento y otras pérdidas, en dB.

¹ Los valores de atenuación en todos los casos de la presente Disposición Técnica deberán expresarse con signo negativo en el entendido que representa una pérdida de potencia.

 $[\varepsilon]_{dB}$

Error del analizador de espectro o de medidor de potencia de RF, obtenido en su calibración y cuyo conocimiento y aplicación garantiza la trazabilidad de la medición a los patrones nacionales.

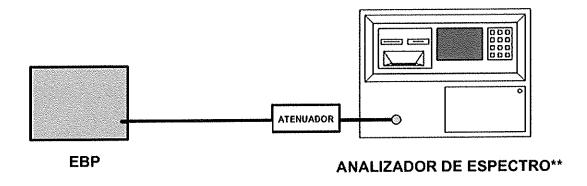


Figura 1. Configuración para medición de emisiones conducidas

** Para el caso del numeral **4.2.5.**, en lugar del analizador de espectro podrá utilizarse un medidor de potencia de RF.

5.2.2. Configuración para medición de emisiones radiadas.

Los sitios para la aplicación de los métodos de pruebas de emisiones radiadas podrán ser una cámara anecoica o un sitio de pruebas de área abierta, los cuales deben poseer las características que aseguren condiciones de espacio libre de reflexiones y bajo condiciones de intervisibilidad a las frecuencias de prueba aquí indicadas, asegurando de esta manera la confiabilidad de las mediciones en las frecuencias a las que se refiere esta Disposición Técnica y que cumplan con las disposiciones que les sean aplicables.

La configuración para la medición de emisiones radiadas se dispone conforme se indica en la Figura 2. Lo anterior sirve para la aplicación de los métodos de prueba en casos en los que la antena del EBP no sea desmontable, o en los que explícitamente se indique esta configuración.

Para este arreglo es necesario conectar al analizador de espectro, una antena receptora calibrada.

La altura, polarización y orientación de las antenas que intervienen en la aplicación de los métodos de prueba de emisiones radiadas deben ser tales que se asegure la máxima transferencia de energía al sistema medidor para que las mediciones sean confiables.

Cuando se use la presente configuración, la determinación de la potencia de salida del EBP, de la misma forma que para la configuración de emisiones conducidas, debe considerar las pérdidas y ganancias habidas en los elementos de la configuración, de la forma que indica la Ecuación 3:

$$\begin{split} [P_{EBP}]_{dBW} &= [P_{medida}]_{dBW} + [\alpha_{cables}]_{dB} + [\alpha_{atenuadores}]_{dB} + [L]_{dB} \\ &+ [\Gamma_o]_{dB} - [G_{antenaEBP}]_{dB} - [G_{antenaanalizador}]_{dB} - [\varepsilon]_{dB} \end{split} \tag{Ecuación 3}$$

Donde:

 $[P_{EBP}]_{dBW}$: Potencia de salida del EBP, en dBW.

 $[P_{medida}]_{dBW}$: Potencia medida en el analizador de espectro, en

dBW.

 $[\alpha_{cables}]_{dB}$: Atenuación en los cables, en dB.

 $[\alpha_{atenuadores}]_{dB}$: Atenuación del atenuador o atenuadores, en dB.

 $[L]_{dB}$: Pérdidas de acoplamiento y otras pérdidas, en dB

 $[\Gamma_o]_{dB}$: Atenuación en el espacio libre, en dB.

 $[G_{antenaEBP}]_{dB}$: Ganancia de la antena del EBP, en dB.

 $[G_{antenaanalizador}]_{dB}$:

Ganancia de la antena receptora calibrada que

conecta al analizador de espectro, en dB.

 $[\varepsilon]_{dB}$:

Error del analizador de espectro, obtenido en su

calibración y cuyo conocimiento y aplicación garantiza la trazabilidad de la medición a los patrones nacionales.

Para el caso de mediciones pico, la determinación de la potencia de salida del EBP puede hacerse a partir de la medición de la intensidad de campo.

La Ecuación 4 se usará para calcular la potencia de salida del transmisor $[P_T]_W$ a partir de la intensidad de campo $[E]_{\frac{V}{m}}$, medida en el analizador de espectro:

$$[P_T]_W = \frac{\left[\frac{[E]_{\stackrel{}{\underline{V}}}[D]_m}{\overline{m}}\right]^2}{30[G]}$$
 (Ecuación 4)

Donde:

 $[P_T]_W$:

Potencia de salida del transmisor, en Watt.

 $[E]_{\frac{V}{m}}$:

Intensidad de campo eléctrico, en Volt/metro.

 $[D]_m$:

Distancia en metros entre las dos antenas, debiendo cumplirse que $D \geq 2d^2/\lambda$ (siendo d un parámetro que corresponde a la antena que se conecta al analizador de espectro denominada antena receptora calibrada y puede ser, cualquiera de las siguientes opciones: a) la longitud mayor del elemento si la antena receptora calibrada es logarítmica periódica, o b) la apertura mayor si la antena receptora calibrada es de corneta;) y λ es la longitud de

onda en metros correspondiente a la frecuencia más alta de la banda de frecuencias en que opere el EBP, condición de región de campo lejano.

[G]: Ganancia numérica de la antena del EBP referida a una antena isotrópica (dBi).

Lo anterior supone que las pérdidas en los cables son despreciables y que no hay pérdidas de acoplamiento, ni atenuadores ni pre-amplificador.

De no ser ese el caso, la potencia de salida del EBP debe considerar esos elementos, como se indica en la Ecuación 5:

$$\begin{split} [P_{EBP}]_{dBW} &= [P_T]_{dBW} + [\alpha_{cables}]_{dB} + [\alpha_{atenuadores}]_{dB} + [L]_{dB} - \\ [G_{pre-amp}]_{dB} - [\varepsilon]_{dB} \end{split} \tag{Ecuación 5}$$

$$\begin{bmatrix} P_{\mathit{EBP}} \end{bmatrix}_{\mathit{dBW}} = \begin{bmatrix} P_T \end{bmatrix}_{\mathit{dBW}} + \begin{bmatrix} \alpha_{\mathit{cables}} \end{bmatrix}_{\mathit{dB}} + \begin{bmatrix} \alpha_{\mathit{atenuadores}} \end{bmatrix}_{\mathit{dB}} + \begin{bmatrix} L \end{bmatrix}_{\mathit{dB}} - \begin{bmatrix} G_{\mathit{pre-amp}} \end{bmatrix}_{\mathit{dB}} - \begin{bmatrix} \varepsilon \end{bmatrix}_{\mathit{dB}}$$

Donde:

 $[P_T]_{dBW}$: Potencia medida en el analizador de espectro, en dBW.

 $[\alpha_{cables}]_{dB}$: Atenuación en los cables, en dB.

 $[\alpha_{atenuadores}]_{dB}$: Atenuación del atenuador o atenuadores, en dB.

 $[L]_{dB}$: Pérdidas de acoplamiento y otras pérdidas, en dB.

 $\left[G_{pre-amp}
ight]_{dB}$: Ganancia del pre-amplificador, en dB del equipo

medidor.

 $[\varepsilon]_{dB}$: Error del analizador de espectro, obtenido en su

calibración y cuyo conocimiento y aplicación garantiza la

trazabilidad de la medición a los patrones nacionales.

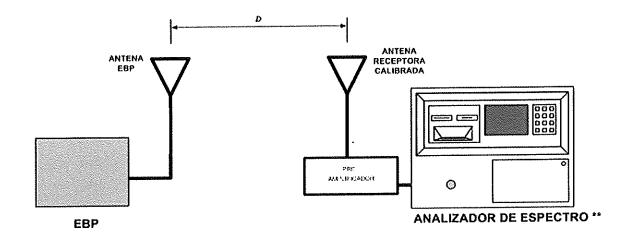


Figura 2 Configuración para medición de emisiones radiadas

** Para el caso del numeral **4.2.5.**, en lugar del analizador de espectro podrá utilizarse un medidor de potencia de RF.

5.2.3. Comprobación del numeral 4.2.1., sobre la estabilidad de la frecuencia.

- a) Armar la configuración de prueba conforme a lo indicado en **5.2**. Elegir la configuración para medición de emisiones conducidas **5.2.1.**, si la antena se puede desconectar del EBP, o la configuración para medición de emisiones radiadas **5.2.2.**, de estar la antena integrada al EBP.
- b) Establecer las siguientes condiciones en el analizador de espectro:
 - Frecuencia central (center frequency)= frecuencia central esperada del EBP sin modulación.
 - II. Intervalo de frecuencias (span) = 500 kHz.
 - III. Ancho de banda del filtro de resolución (RBW) = 3 kHz
 - IV. Ancho de banda de video (VBW) > RBW
 - **V.** Tiempo de barrido (sweep time) = auto
 - VI. Detector (detector function) = pico
 - VII. Traza (trace)= retención máxima de imagen (max hold).

- c) El EBP debe estar transmitiendo sin modulación.
- d) Permitir que la traza se estabilice y ubicar el marcador en la frecuencia central esperada (dentro de las bandas de frecuencia de la tabla 2).
- e) Utilizar la función Marcador-Delta (Marker-Delta) para medir la frecuencia central esperada.
- f) Establecer a cero la función Marker Delta, procediendo a mover el marcador al pico del espectro de la emisión desplegada (de ser necesario medir el pico del lado derecho y el del lado izquierdo).
- g) Registrar la lectura de la función Marker-Delta como Δf.
- h) La estabilidad en frecuencia es igual a la desviación máxima en frecuencia Δf , dividida entre la frecuencia central esperada y multiplicando este cociente por 1×10^6 .

Estabilidad en Frecuencia p.p.m.) = $[\Delta f (Hz) / fcentral (Hz)] * 1000000$

i) Imprimir la gráfica correspondiente.

La estabilidad en frecuencia medida deber cumplir con un valor máximo de ±20 p.p.m. de acuerdo con lo que se especifica en el numeral **4.2.1.**

5.2.4. Comprobación del numeral 4.2.2., sobre la potencia de transmisión.

Es importante observar que la especificación 4.2.2., se refiere a valores de potencia de salida del EBP conducida a la antena o antenas, por lo que para comprobar el cumplimiento de esta especificación se emplea el método de prueba 5.2.4.1., misma que debe hacerse usando la configuración para medición de emisiones conducidas, presentada en el numeral 5.2.1.; sin embargo, por la posibilidad de que existan equipos a los que no se les pueda hacer la medición de emisiones conducidas debido a que la antena o antenas no sean desmontables, podrá usarse la configuración para medición de emisiones

radiadas presentada en **5.2.2.**; en este último caso, es necesario que el solicitante presente la ganancia de la antena o antenas empleadas.

- **5.2.4.1.** Para medir la potencia pico máxima de salida del transmisor conducida a la antena o antenas (relativa a la especificación **4.2.2.**), se utiliza el método de detección de pico.
- a) Armar la configuración de prueba conforme a lo indicado en el numeral 5.2. Si la antena se puede desconectar del EBP elegir la configuración para medición de emisiones conducidas presentada en el numeral 5.2.1., o elegir la configuración para medición de emisiones radiadas 5.2.2., si la antena está integrada al EBP y no exista posibilidad de desconexión.

Para el caso de que el ancho de banda de la emisión del EBP a 6 dB fuera mayor que el ancho de banda del filtro de resolución (RBW) del analizador de espectro, podrá utilizarse, alternativamente a éste, un medidor de potencia de RF, sin ejecutar, en tal caso, los incisos b) a d).

- b) Establecer las siguientes condiciones de alimentación en el EBP.
 - I. Alimentar al EBP con la tensión nominal de alimentación primaria.
- c) Establecer las siguientes condiciones en el analizador de espectro.
 - Intervalo de frecuencias (span) = Suficiente para contener la señal de interés;
 - Ancho de banda del filtro de resolución (RBW) ≥ que el ancho de banda de la emisión del EBP a 6 dB (véase 5.2.4.2.);
 - III. Ancho de banda de video (VBW) = Auto;
 - IV. Tiempo de barrido (sweep time)) = Auto;
 - V. Detector (detector function) = Pico;
 - VI. Traza (trace) = Retención máxima de imagen (max hold).
- d) Permitir que la traza se estabilice.
- e) Colocar el marcador en el pico del espectro de la emisión y medir el nivel marcado.

Sumar a los valores determinados en d), o con el medidor de potencia de RF mencionado en la última parte del inciso a), las pérdidas y ganancias de la cadena de la configuración de prueba, según lo previsto en 5.2.1., para el caso de una configuración para medición de emisiones conducidas, o en 5.2.2., para el caso de una configuración para medición de emisiones radiadas.

El resultado de dicha suma es la potencia pico máxima de salida del transmisor.

- g) Para el caso de haber utilizado un analizador de espectro, imprimir la gráfica respectiva.
- h) Repetir los pasos c) a g) ahora con las siguientes condiciones.
 - Alimentar al EBP con +15% de la tensión nominal de alimentación primaria
- Repetir los pasos c) a g) ahora con las siguientes condiciones.
 - Alimentar al EBP con -15% de la tensión nominal de alimentación primaria
- j) Calcular las variaciones de la potencia de trasmisión tomando como referencia la potencia pico alimentando al EBP con la tensión nominal de alimentación primaria, respecto de las variaciones en tensión +15% y -15%; registrar los resultados de las diferencias.

Para el cumplimiento la potencia de transmisión no deberá presentar variaciones mayores que ± 1 dB del valor requerido como máximo cuando sea sometido a variaciones de $\pm 15\%$ de la tensión de alimentación primaria, a una temperatura de -10 °C a +50 °C.

- **5.2.4.2.** El Ancho de banda RF a 6 dB de la señal del transmisor (relativa al método 5.2.4.1) se mide de la siguiente forma:
- a) Armar la configuración de prueba conforme a lo indicado en 5.2., elegir la configuración para medición de emisiones conducidas 5.2.1., si la antena se puede desconectar del EBP, o la configuración para medición de emisiones radiadas 5.2.2., de estar la antena integrada al EBP.

- b) Poner el EBP a transmitir modulando la señal.
- c) Establecer las siguientes condiciones en el analizador de espectro.
 - Intervalo de frecuencias (span) > que RBW y suficiente para visualizar el canal completo a medir, Ancho de banda del filtro de resolución (RBW) = 100 kHz;
 - II. Ancho de banda de video (VBW) = Auto;
 - III. Tiempo de barrido (detector function) = Auto;
 - IV. Detector (detector function) = Pico;
 - **v.** Traza (trace) = Retención máxima de imagen (max hold).
- d) Permitir que la traza se estabilice y entonces ubicar el marcador del analizador de espectro en el pico de la emisión desplegada.
- e) Utilizar la función Marcador-Delta (Marker-Delta) para medir 6 dB por debajo del pico sobre uno de los lados del espectro de la emisión.
- f) En ese punto establecer a cero la función Marcador-Delta (Marker-Delta), moviendo el marcador al otro lado del espectro de la emisión manteniéndolo al mismo nivel. (6 dB por debajo del pico).
- g) Registrar la lectura de la función Marcador-Delta (Marker-Delta) como el ancho de banda del canal a 6 dB.
- h) Imprimir la gráfica correspondiente.
- **5.2.5.** Comprobación del numeral **4.2.3.**, sobre los niveles máximos de potencia de las emisiones no esenciales.

Por ser ésta una medición de potencia, debe llevarse a cabo bajo el mismo criterio de medición de potencia de salida, en el caso de medición de potencia pico, los picos de potencia obtenidos en el inciso e), del numeral 5.2.4.2., de las emisiones fuera de las bandas de operación deberán estar atenuados 43+10log10P ó 70 dBc lo que sea más restrictivo en relación con la potencia pico del nivel de referencia medido en un intervalo de 100 KHz dentro de la banda de operación.

- 5.2.5.1. Método de medición pico.
- a) Armar la configuración de prueba conforme a lo indicado en el numeral 5.2. Si la antena se puede desconectar del EBP elegir la configuración para medición de emisiones conducidas presentada en el numeral 5.2.1., o elegir la configuración para medición de emisiones radiadas 5.2.2., si la antena está integrada al EBP y no exista posibilidad de desconexión. Para el caso de configuración para medición de emisiones radiadas pudiera ser necesario el uso del pre-amplificador previsto en 5.2.2.
- b) Establecer las siguientes condiciones en el analizador de espectro.
 - Intervalo de frecuencias (span) = el suficiente para ver el nivel pico de las señales no esenciales de la emisión del EBP, en el intervalo que va desde 30 MHz hasta 10 veces la frecuencia fundamental de la emisión o 40 GHz, la que resulte menor.
 - **b.1** Para el caso de emisiones para frecuencias de 30 MHz a 1 GHz, Modo pico:
 - RBW=100 kHz;
 - II. Ancho de banda de video (VBW) $> 3 \times RBW$;
 - III. Tiempo de barrido (sweep time) = auto;
 - IV. Detector (detector function) = pico;
 - V. Traza (trace) = Retención máxima de imagen (max hold).
 - b.2 Para el caso de emisiones para frecuencias > 1 GHz, Método de Medición Pico:
 - I. Para el caso de medición de emisiones conducidas, Ancho de banda del filtro de resolución (RBW) = 100 kHz; para el caso de medición de emisiones radiadas, RBW=1 MHz;
 - II. Ancho de banda de video (VBW) $> 3 \times RBW$;
 - III. Tiempo de barrido (sweep time) = Auto;
 - IV. Detector (detector function) = Pico;
 - V. Traza (trace) = Retención máxima de imagen (max hold).

- c) Permitir que la traza se estabilice.
- d) Con el marcador identificar los picos de las emisiones encontradas no esenciales en una o más frecuencias situadas fuera de la banda de frecuencia, en el intervalo que va desde 30 MHz hasta 10 veces la frecuencia fundamental de la emisión o 40 GHz, la que resulte menor. Medir el nivel de referencia con la función marcador pico en un intervalo de 100 kHz dentro de la banda de operación.
- e) Para obtener los picos de potencia de las emisiones fuera de las bandas de operación así como el pico del nivel de referencia sumar a cada valor medido en
- d) Las pérdidas y ganancias de la cadena de la configuración de prueba, según lo previsto en **5.2.1.**, para el caso de una configuración para medición de emisiones conducidas, o en **5.2.2.**, para el caso de una configuración para medición de emisiones radiadas.
- f) Imprimir las gráficas correspondientes.
- g) Comprobar que todos los picos de las emisiones obtenidas en el inciso e) cumplan con estar atenuadas 43 + 10log10 P ó 70 dBc, lo que sea más restrictiva con respecto a la producida en el intervalo de 100 kHz dentro de la banda de operación que contenga el más alto nivel de potencia.
- 5.2.6. Método de prueba para comprobar la especificación 4.2.4.
- **5.2.6.1.** La comprobación del cumplimiento del numeral **4.2.4**.en todos sus incisos se verificará con las especificaciones técnicas del fabricante del equipo.
- a.2.7. Comprobación de PIRE, referente al numeral 4.2.5.

Para cumplir con la especificación relativa al cumplimiento de PIRE máximo, la configuración de medición comprendida por el equipo de bloqueo de señales y la antena de ganancia máxima, se procederá como sigue:

a) Para todos y cada uno de los tipos de antena empleados:

- Elegir la antena de mayor ganancia, para con ella armar la configuración para medición de emisiones radiada.
- ii. Poner el EBP a transmitir a su máximo nivel.
- iii. De no poderse observar y medir adecuadamente en el analizador de espectro la señal del EBP, para poder hacerlo podrá usarse un pre-amplificador que opere correctamente en las frecuencias para las cuales se vaya a medir el PIRE, colocándolo entre la antena receptora calibrada y el analizador de espectro, conforme se indica en la Figura 2.
- iv. Establecer las siguientes condiciones en el analizador de espectro:
 - a) Intervalo de frecuencias (span) = Suficiente para contener la señal del EBP;
 - **b)** Ancho de banda del filtro de resolución (RBW) = que el Ancho de banda a 6 dB de la emisión del EBP;
 - c) Ancho de banda de video (VBW) = auto;
 - d) Tiempo de barrido (sweep time) = auto;
 - e) Detector (detector function) = pico;
 - f) Traza (trace) = retención máxima de imagen (max hold).
- v. Permitir que la traza se estabilice
- vi. Con el marcador registrar el pico de la emisión del EBP.
- vii. Aplicar la Ecuación 6 para obtener la PIRE:

$$[PIRE]_{dBW} = [P_{medida}]_{dBW} + [\alpha_{cables}]_{dB} + [L]_{dB} + [\Gamma_o]_{dB} - [G_i]_{dBi}$$

$$-[G_{mre-amp}] - [\varepsilon]_{dB} \qquad \text{(Ecuación 6)}$$

Donde:

 $[PIRE]_{dBW}$: Potencia isótropa radiada equivalente del EBP o del amplificador

externo del EBP, en dBW.

 $[P_{medida}]_{dBW}$: Potencia medida en el analizador de espectro, en dBW (el

registrado en vi.)

 $[\alpha_{cables}]_{dB}$: Atenuación en los cables usados en el arreglo de medición, en

dB.

 $[L]_{dB}$: Pérdidas de acoplamiento y otras pérdidas, en dB.

 $[\Gamma_o]_{dB}$: Atenuación en el espacio libre, en dB.

 $[G_i]_{dBi}$: Ganancia isótropa de la antena receptora, en dBi.

 $[G_{pre-amp}]$: Ganancia del preamplificador del equipo medidor, en dB, en

caso de haberlo usado.

 $[\varepsilon]_{dB}$: Error del analizador de espectro, obtenido en su calibración y

cuyo conocimiento y aplicación garantiza la trazabilidad de la

medición a los patrones nacionales.

Y $[\Gamma_o]_{dB}$ Se obtiene empleando la Ecuación 7:

$$[\Gamma_{\rm o}]_{dB} = 20 \log \left(\frac{4\pi [D]_m}{[\lambda]_m}\right)$$
 (Ecuación 7)

Donde:

 $[D]_m$: Separación entre la antena del EBP y la antena patrón, en metros, como se indica en la Figura 2.

 $[\lambda]_m$: Longitud de onda en metros correspondiente a la frecuencia central de la emisión del EBP desplegada en el analizador de espectro (el pico), conforme se indica en el inciso a), vi.

El PIRE en Watt a partir de una medición de PIRE en dBW, se obtiene aplicando la Ecuación 8:

$$PIRE_W = antilog \left[\frac{PIRE_{dBW}}{10} \right] (1W)$$
 (Ecuación 8)

Para el cumplimiento del numeral **4.2.5**., los elementos radiadores utilizados con los equipos bloqueadores de señales inhibidores de señales de telecomunicación deben ser aquellos que permitan que la potencia efectiva radiada sea la mínima necesaria para bloquear las señales en el interior de los centros de readaptación social.

Los equipos de bloqueo de señales inhibidores de señales de telecomunicación deben ser evaluados con la antena única que vaya integrada al equipo o, de existir la posibilidad de conectabilidad/desconectabilidad de las antenas, con el conjunto de antenas del mismo tipo o de diferente tipo con los cuales pueda operar/bloquear..

- **5.2.8.** Comprobación del numeral **4.2.6.**, sobre_las bandas de frecuencia de operación.
 - a) Armar la configuración de prueba para medición de emisiones radiadas de acuerdo con el numeral **5.2.2.**, de estar la antena integrada al EBP.
 - b) Establecer el analizador de espectro en modo de vídeo promedio con un mínimo de 50 barridas por segundo y en retención máxima de imagen (max hold).
 - c) Para todas y cada una de las bandas de frecuencias en que nominalmente pueda funcionar el EBP.

- i) Activar el transmisor del EBP, alimentando con su señal modulada la entrada del analizador de espectro.
- ii) Ajustar los controles del analizador de espectro para que la señal completa emitida por el EBP aparezca graficada en la pantalla.
- extremos bajo y alto de frecuencia, correspondientes a la densidad espectral de potencia por debajo del nivel equivalente a -80 dBm/Hz (-30 dBm, si es medido en el ancho de banda de 100 kHz). Dichos registros de los extremos bajo y alto, corresponden, respectivamente, a los extremos bajo y alto de la banda de frecuencias de operación del EBP.
- d) Para cada una de las bandas de frecuencias en que nominalmente opere el EBP, si los extremos bajo y alto de la banda de frecuencias referido en c) iii) se hallan dentro de alguna de las bandas de frecuencias especificadas en el EBP, cumple la especificación para esa banda de frecuencias.

Para el cumplimiento sobre las bandas de frecuencia de operación de los equipos bloqueadores de señales inhibidores de señales de telecomunicación se deberán atender las características técnicas descritas en las Tablas 2 y 3.

5.2.9. Comprobación del numeral **4.2.7.**, sobre la capacidad de operar en dos o más de las bandas de frecuencias.

Para el cumplimiento debe cumplirse con los límites establecidos en la Tabla 2 de frecuencias de referencia por bloquear y,

a) Para cada una de las bandas de frecuencias en que puede funcionar el EBP, aplicar todas las pruebas para las especificaciones que le correspondan: generales, por su tipo y de aplicación.

b) Si el EBP, cumple con todas las especificaciones que le correspondan generales, por su tipo y de aplicación, el equipo cumple con la especificación 4.2.7.

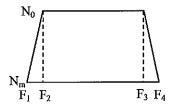
5.2.10. Comprobación del numeral **4.2.8**, sobre la evaluación conjunta de equipos bloqueadores de señales inhibidores de señales de telecomunicación que cuenten con amplificadores de potencia de radiofrecuencia integrados.

Aplicar los métodos 5.2.4, 5.2.5, 5.2.7, 5.2.8 para verificar el cumplimiento.

Los equipos se evaluarán de manera conjunta con los amplificadores de potencia integrados.

5.2.11. Comprobación del numeral **4.2.9**., sobre la prohibición de la operación de amplificadores de potencia de radiofrecuencia externos.

Se comprueba documentalmente mediante la revisión del compromiso por escrito del solicitante de que no empleará amplificadores externos al equipo bloqueador de señales inhibidor de señales de telecomunicación.


5.2.12. Comprobación del numeral **4.2.10.**, sobre la prohibición de que el equipo no cuente con controles externos.

Se comprueba ocularmente en el EBP.

Al respecto de la obligación de que los equipos de bloqueo de señales inhibidores de señales de telecomunicación cuenten con sistemas automáticos que envíen señales de alarma ante cualquier interrupción en su funcionalidad, lo anterior se comprueba documentalmente mediante la revisión del compromiso por escrito del solicitante de que el equipo de bloqueo de señales cuenta con una interfaz y/o los mecanismos necesarios para que éste envíe una señal de alarma ante cualquier interrupción en su funcionalidad.

5.2.13. Comprobación de que sólo se bloquea el enlace o conexión de bajada (*Downlink*), para el caso específico de señales de radiocomunicación móvil que empleen la tecnología celular y/o radio troncalizado. En relación al numeral **4.2.11.**

Se comprueba observando que los EBP bloqueen exclusivamente el enlace o conexión de bajada (Downlink), mostrados en la Tabla 3.

Donde N₀ es el nivel nominal en dBm; F₂, en MHz, es la frecuencia inicial del intervalo de frecuencia a bloquear; N_m en dBm, es el nivel máximo permitido que en combinación con la frecuencia F₁ en MHz, establecen el límite fuera del cual a la izquierda de los equipo bloqueadores de señales no deberán emitir señal alguna, asimismo a la derecha F₃ establecen la frecuencia permitida a bloquear y F₄ establece en conjunto con N_m el límite fuera del cual a la derecha no se deberá emitir señal alguna por los equipos bloqueadores de señales inhibidores de señales de telecomunicación.

- a) Armar la configuración de prueba conforme a lo indicado en **5.2.**, elegir la configuración para medición de emisiones conducidas **5.2.1.**, si la antena se puede desconectar del EBP, o la configuración para medición de emisiones radiadas **5.2.2.**, de estar la antena integrada al EBP.
- b) Establecer las siguientes condiciones en el analizador de espectro:
 - Intervalo de frecuencias (span) = al ancho de banda de la Tabla 3 centrado en uno de los canales;

- II. Ancho de banda del filtro de resolución (RBW) = 100 kHz;
- III. Ancho de banda de video (VBW) ≥ RBW;
- IV. Tiempo de barrido (sweep time) = auto;
- V. Detector (detector function) = pico;
- VI. Traza (trace)= retención máxima de imagen (max hold).
- c) Poner a transmitir el EBP con su señal modulada.
- d) Permitir que la traza se estabilice y entonces ubicar el marcador de acuerdo con la Tabla 4 en el espectro de la emisión desplegada.
- e) Utilizar la función Marcador (Marker) para medir № (dB).
- f) En ese punto, establecer a cero la función Marcador-Delta, procediendo entonces a mover el marcador (a la izquierda) para encontrar N_m en el espectro de la emisión.
- Registrar la lectura de la frecuencia en N_0 (F2) y en N_m (F1) así como los niveles correspondientes de N_0 y N_m en dB. Posteriormente repetir los pasos del inciso e) al g) pero ahora para del lado izquierdo para registrar F2 y F4, así como sus niveles correspondientes en dB.
- h) Imprimir la gráfica correspondiente.

La "máscara" de frecuencia así medida, deberá cumplir con lo establecido en Tabla 3 para asegurarse que sólo se bloqueará la frecuencia de enlace descendente (Downlink).

- **5.2.14.** Comprobación del numeral **4.2.12**., sobre la prohibición de bloqueo de la señal correspondiente a la tecnología Tetrapol como en el caso de los radios Matra:
 - a) Armar la configuración de prueba conforme a lo indicado en 5.2., elegir la configuración para medición de emisiones conducidas 5.2.1., si la antena

se puede desconectar del EBP o la configuración para medición de emisiones radiadas **5.2.2**., de estar la antena integrada al EBP.

- b) Para cada una de las bandas de frecuencias en que puede funcionar el EBP:
 - i. Activar el transmisor del EBP, alimentando con su señal modulada la entrada del analizador de espectro.
 - ii. Establecer la frecuencia central del analizador de espectro a la frecuencia central de los radios Matra.
 - iii. Establecer en el analizador de espectro el intervalo de frecuencias (span) que comprenda al espectro de la banda de operación de los radios Matra.
 - iv. Establecer en el analizador de espectro el tiempo de barrido(sweep time) = auto.
 - v. Observar si durante la operación del transmisor del EBP, en la pantalla del analizador de espectro no se observa ninguna señal graficada, como un indicativo de que la señal de los radios Matra no será bloqueada bajo ninguna circunstancia.
 - vi. De ser el caso que el EBP pueda operar en más de una banda de las establecidas en la Tabla 1; cambiar la banda de frecuencias de operación del transmisor del EBP a las otras en que es capaz de operar y repetir los incisos iii) a v).

Si para todas y cada una de las bandas de frecuencias en que es capaz de operar el EBP se comprueba que la señal de los radios Matra no es bloqueada bajo ninguna circunstancia, se cumple la especificación **4.2.12**.

5.2.15. Comprobación del numeral **4.2.13.**, sobre el cumplimiento de la Disposición Técnica emitida por el Instituto referente a los límites de exposición máxima para seres humanos a radiaciones electromagnéticas de radiofrecuencia no ionizantes.

Se comprueba documentalmente mediante el compromiso por escrito del solicitante de que el equipo de bloqueo de señales instalado en un centro de readaptación social, deberá demostrar cumplimiento con los límites de exposición máxima para seres humanos a radiaciones electromagnéticas de radiofrecuencia no ionizantes que al efecto emita el Instituto en la Disposición Técnica correspondiente.

5.2.16. Comprobación sobre el cumplimientodel manual del equipo bloqueador de señales inhibidor de señales de telecomunicación. Relativa a la especificación **4.3**.

Se comprueba documentalmente mediante la revisión del manual del equipo bloqueador de señales inhibidor de señales de telecomunicación, que se encuentre en idioma español y que contenga información suficiente, clara y veraz de sus características técnicas.

6 INSTALACIÓN Y OPERACIÓN

Por lo que hace a la instalación, operación y buen funcionamiento de los equipos bloqueadores de señales inhibidores de señales de telecomunicación se deberá observar lo establecido en los "LINEAMIENTOS DE COLABORACIÓN ENTRE AUTORIDADES PENITENCIARIAS Y LOS CONCESIONARIOS DE SERVICIOS DE TELECOMUNICACIONES Y BASES TÉCNICAS PARA LA INSTALACIÓN Y OPERACIÓN DE SISTEMAS DE INHIBICIÓN", publicado en el Diario Oficial de la Federación el 3 de septiembre de 2012, o bien la disposición que en su momento los sustituya.

El Instituto en cualquier momento, podrá evaluar la operación en campo de los inhibidores de señal de telecomunicación para comprobar su cumplimiento a la presente Disposición y a los LINEAMIENTOS DE COLABORACIÓN ENTRE AUTORIDADES PENITENCIARIAS Y LOS CONCESIONARIOS DE SERVICIOS DE TELECOMUNICACIONES Y BASES TÉCNICAS PARA LA INSTALACIÓN Y OPERACIÓN DE SISTEMAS DE INHIBICIÓN.

7 CONCORDANCIA CON NORMAS INTERNACIONALES

No se establece concordancia con normas internacionales por no existir referencias al momento de la elaboración de la presente Disposición Técnica.

8 BIBLIOGRAFÍA

- 1. Decreto por el que se reforman y adicionan diversas disposiciones de los artículos 60., 70., 27, 28, 73, 78, 94 y 105 de la Constitución Política de los Estados Unidos Mexicanos, en materia de telecomunicaciones, publicado en el Diario Oficial de la Federación el 11 de junio de 2013.
- 2. Ley Federal de Telecomunicaciones y Radiodifusión
- 3. Reglamento Internacional de Telecomunicaciones de la UIT.
- 4. Lineamientos de Colaboración entre Autoridades Penitenciarias y los Concesionarios de Servicios de Telecomunicaciones y Bases Técnicas para la Instalación y Operación de Sistemas de Inhibición publicados en el Diario Oficial de la Federación el 3 de septiembre de 2012.
- 5. Resolución 306/2002. NORMA PARA CERTIFICAÇÃO E HOMOLOGAÇÃO DE BLOQUEADORDE SINAIS DE RADIOCOMUNICAÇÕES, del 5 de agosto de 2002.
- 6. Boletín Oficial de la República Argentina, 29 de octubre de 2010.
- 7. Radiocommunications (Prohibited Device) (RNSS Jamming Devices)
 Declaration 2004, 25 de Agosto de 2004.

8. FCC. Aviso de aplicación de normas, DA-12-1642, 15 de octubre de 2012.

9 EVALUACIÓN DE LA CONFORMIDAD Y VIGILANCIA DEL CUMPLIMIENTO

La evaluación de la conformidad de la presente Disposición Técnica se realizará en los términos de la LFTR y los lineamientos que al efecto emita el Instituto.

El Instituto otorgará a petición de parte el certificado de homologación correspondiente una vez que el solicitante anexe en su solicitud el certificado de cumplimiento respectivo.

Los certificados de cumplimiento que emita el organismo de certificación correspondiente deberá incluir la siguiente leyenda:

"El presente certificado de cumplimiento únicamente ampara el uso del presente equipo bloqueador de señales inhibidor de señales de telecomunicación, marca [incluir marca], modelo (incluir modelo), para bloquear, cancelar o anular de manera permanente las señales de radiocomunicación dentro del perímetro de los centros de readaptación social, establecimientos penitenciarios o centros de internamiento para menores, federales o de las entidades federativas, cualquiera que sea su denominación, de conformidad con lo establecido en la Disposición Técnica IFT-010-2015. Cualquier uso diferente al antes mencionado será tratado conforme a lo previsto en la Ley Federal de Telecomunicaciones y Radiodifusión y demás disposiciones aplicables."

El certificado de cumplimiento emitido por un organismo de certificación es intransferible. Asimismo, no se podrán solicitar ampliaciones de dicho certificado de cumplimiento para equipos sujetos a esta Disposición Técnica.

Corresponde al Instituto la vigilancia del cumplimiento del presente ordenamiento de conformidad con las disposiciones legales aplicables.

10 CONTRASEÑA DE PRODUCTO

Los equipos amparados por el certificado de homologación, deberán exhibir el número de certificado de homologación correspondiente, así como la marca y el modelo con la que se expide este certificado en cada unidad de producto mediante marcado o etiqueta que lo haga ostensible, claro, visible, legible, intransferible e indeleble con el uso normal, de no ser posible de exhibir dicho número en el producto mismo, deberá hacerse en su envase, embalaje, etiqueta, envoltura, hoja viajera, registro electrónico interno o manual.

El marcado o etiqueta a que se refiere el párrafo anterior, deberá cumplir con los elementos y características que indique la disposición que al efecto emita el Instituto.

TRANSITORIOS

Primero.- La presente Disposición Técnica entrará en vigor a los 60 días naturales siguientes de su publicación en el Diario Oficial de la Federación y, será revisada por el Instituto a los 5 años contados a partir de su entrada en vigor.

Segundo.- Los laboratorios de pruebas y organismos de certificación podrán llevar a cabo la evaluación de la conformidad, siempre y cuando se encuentren en condiciones de realizarla conforme a lo dispuesto en la presente Disposición

Técnica, requiriendo una acreditación por el organismo de acreditación y una autorización por el Instituto.

Tercero.- Los equipos de bloqueo de señales inhibidores de señales de telecomunicación instalados en centros de readaptación social, establecimientos penitenciarios o centros de internamiento para menores, federales o de las entidades federativas, cualquiera que sea su denominación, deberán adecuarse técnicamente a lo establecido en la presente Disposición Técnica, en un plazo no mayor de 24-6 meses contados a partir de la entrada en vigor de la presente Disposición Técnica.